目前,钼粉末压制成型技术朝着“成型件的高致密化、结构复杂化、(近)净成型、成型快速化”的方向发展。以下几种钼粉末压制成型技术具有很大的技术创新性,一旦取得突破,将对钼固结技术(包括压制和烧结)产生革命性的影响,
动磁压制(DMC)技术
动磁压制的工作原理是:将粉末装于一个导电的护套内,置于高强磁场线圈的中心腔内。电容器放电在数微秒内对线圈通入高脉冲电流,线圈腔内形成磁场,护套内
产生感应电流。感应电流与施加磁场相互作用,产生由外向内压缩护套的磁力,因而粉末得到二维压制。整个压制过程不足1
ms。相对传统的模压技术,动磁压制技术具有工件压制密度高(生坯密度可达到理论密度的95%以上),工作条件更加灵活,不使用润滑剂与粘结剂,有利于环
保等优点。目前动磁压制的应用已接近工业化阶段,第1台动磁压制系统已在试运行。
温压技术
温压技术工艺过程是,在140
℃左右,将由原料粉末和高温聚合物润滑剂组成的粉末喂入模具型腔,然后压制获得高致密度的压坯。这种专利聚合物在约150
℃具有良好的润滑性,而在室温则成为良好的粘结剂。温压技术是一项利用单次压制/烧结制备高致密度零件的低成本技术,只通过一次压制便可达到复压/复烧或
熔渗工艺方能达到的密度,而生产成本却低得多,甚至可与粉末锻造相竞争。但目前适合于钼合金的喂料配方尚需试验确定。
流动温压(WFC)技术
流动温压技术基本原理是:通过在常规粒度粉末中,加入适量的微细粉末和润滑剂,从而大大提高了混合粉末的流动性、填充能力和成形性,进而可以在
80~130 ℃温度下,在传统压机上精密成形具有复杂几何外形的零件,如带有与压制方向垂直的凹槽、孔和螺纹孔等零件,而不需要其后的二次机加工。
作为一种崭新的粉末冶金零部件近终形成形技术,流动温压技术既克服了传统粉末冶金技术在成形方面的不足,又避免了注射成形技术的高成本,具有十分广阔的应
用潜力。目前,该技术尚处于研究的初始阶段,混合粉末的制备方法、适用性、成形规律、受力状况、流变特性、烧结控制、致密化机制等方面的研究尚在继续。
高速压制(HVC)技术
粉末冶金用高速压制技术采用液压机,在比传统快500~1 000倍的压制速度(压头速度高达2~30
m/s)下,同时利用液压驱动产生的多重冲击波,间隔约0.3
s的附加冲击波将密度不断提高。高速压制压坯的径向弹性后效很小,压坯的尺寸偏差小,可用于粉末的近净形成型,且生产效率极高;但其设备吨位较大,尚不具
备制备大尺寸工件的能力,且工艺过程环境噪音污染严重。
2013年7月2日星期二
新型钼粉烧结技术之微波烧结
近年来,钼粉烧结技术层出不穷。电场活化烧结技术(FAST)是通过在烧结过程中施加低电压(~30 V)和高电流(>600 A)的电场,实现脉冲放电与直流电同时进行,达到电场活化烧结,获得显微结构显著细化、烧结温度显著降低、烧结时间明显缩短的目的。选择性激光烧结(SLS)应用分层制造方法,首先在计算机上完成符合需要的三维CAD模型,再用分层软件对模型进行分层,得到每层的截面,然后采用自动控制技术,使激光有选择地烧结出与计算机内零件截面相对应部分的粉末,实现分层烧结。
从理论上讲,这些烧结技术都具有很高的学术价值,但大多尚处于实验室研究阶段,只能用于小尺寸钼制品的小批量烧结,距离工业应用研究尚有很大距离。
微波烧结技术
微波烧结利用材料吸收微波能转化为内部分子的动能和热能,使材料整体均匀加热至一定温度而实现致密化烧结的目的。微波烧结是快速制备高质量的新材料和制备具有新性能的传统材料的重要技术手段之一。
相对电阻烧结、火焰烧结、感应烧结等传统烧结方法而言,微波烧结法不仅具有节能明显,生产效率高,加热均匀(其温度梯度为传统方式的1/10),烧结制品 少(无)内应力、大幅变形和烧结裂纹等缺陷,烧结过程精确可控等优点。另外,微波加热技术可用于钼精矿升华除杂、钼精矿焙烧、钼酸铵焙解、钼粉还原等多种 工艺环节。但由于微波穿透深度的限制,被烧结材料的直径一般不大于60 mm,另外微波烧结气氛很难保证处于纯H2,因此很难避免钼的烧结过程氧化污染。
2013年7月1日星期一
几种新型钼粉烧结技术
热等静压钼粉烧结技术
气压烧结(热压烧结)技术是一种压制机械能与烧结热能耦合作用下的钼固结技术,热等静压是其中应用最成功的工艺。对烧结密度、组织均匀性和空隙率等烧结指 标要求比较高的高端钼烧结产品,如TFT-LCD用钼溅射靶材,国外大多采用热等静压技术,其产品质量远高于传统的冷等静压-无压烧结工艺。
放电等离子钼粉烧结技术
放电等离子烧结技术(SPS)是一种利用通-断直流脉冲电流直接通电烧结的加压烧结法其工艺原理是,电极通入通-断式直流脉冲电流时瞬间产生的放电等离子 体、放电冲击压力、焦耳热和电场扩散作用,使烧结体内部各个颗粒均匀地自身产生焦耳热并使颗粒表面活化,从而利用粉末内部的自身发热作用实现烧结致密化, 获得均质、致密、细晶的烧结组织。
这种比传统烧结工艺低180~500 ℃,且高温等离子的溅射和放电冲击可清除粉末颗粒表面杂质(如去除表层氧化物等)和吸附的气体。W德国FCT公司已经采用这种技术制备出直径为�300 mm的钼靶材,国内尚无类似生产工艺的报导。
铝热法还原钼粉烧结一体化技术
铝热法采用铝粉末作为还原剂,在200~300 ℃下,对钼酸钙、硫化钼或三氧化钼进行低温还原,可用大大低于常规氢还原工艺的成本和较高生产效率制得低密度粗制钼产品或钼合金涂层。同时,在一定的气体 压力作用下,随着还原过程的进行,钼粉可产生初步烧结,获得质量要求较低的钼坯料。这种钼坯料可作为钢铁和高温合金的合金添加剂,也可作为电解精炼法制备 高纯钼制品的原料。
气压烧结(热压烧结)技术是一种压制机械能与烧结热能耦合作用下的钼固结技术,热等静压是其中应用最成功的工艺。对烧结密度、组织均匀性和空隙率等烧结指 标要求比较高的高端钼烧结产品,如TFT-LCD用钼溅射靶材,国外大多采用热等静压技术,其产品质量远高于传统的冷等静压-无压烧结工艺。
放电等离子钼粉烧结技术
放电等离子烧结技术(SPS)是一种利用通-断直流脉冲电流直接通电烧结的加压烧结法其工艺原理是,电极通入通-断式直流脉冲电流时瞬间产生的放电等离子 体、放电冲击压力、焦耳热和电场扩散作用,使烧结体内部各个颗粒均匀地自身产生焦耳热并使颗粒表面活化,从而利用粉末内部的自身发热作用实现烧结致密化, 获得均质、致密、细晶的烧结组织。
这种比传统烧结工艺低180~500 ℃,且高温等离子的溅射和放电冲击可清除粉末颗粒表面杂质(如去除表层氧化物等)和吸附的气体。W德国FCT公司已经采用这种技术制备出直径为�300 mm的钼靶材,国内尚无类似生产工艺的报导。
铝热法还原钼粉烧结一体化技术
铝热法采用铝粉末作为还原剂,在200~300 ℃下,对钼酸钙、硫化钼或三氧化钼进行低温还原,可用大大低于常规氢还原工艺的成本和较高生产效率制得低密度粗制钼产品或钼合金涂层。同时,在一定的气体 压力作用下,随着还原过程的进行,钼粉可产生初步烧结,获得质量要求较低的钼坯料。这种钼坯料可作为钢铁和高温合金的合金添加剂,也可作为电解精炼法制备 高纯钼制品的原料。
钼粉冶金过程的数值模拟技术发展
钼粉还原、成型、烧结工艺多依赖于生产经验积累。近年来随着钼制备加工技术的精整化,数值模拟逐渐用于钼的这3个粉末
冶金工艺段,为研究微观演化过程,揭示钼制备加工过程的准确机制,进而为实现钼成型工艺的可控性提供理论支持。就这3段工艺的实质而言,钼粉还原阶段属于
典型的扩散场现象,可借鉴流体介质模拟技术;成型、烧结过程属于典型的非连续介质体,且原料粉末组成异常复杂,无法建立统一的几何模式、物理模型和数学模
型,目前尚无完善的模拟技术和模拟软件。
钼粉成型过程数值模拟
钼粉压制成型时,粉末的应力变形比固态金属复杂,可归纳为2个主要阶段:压制前期为松散粉末颗粒的聚合,压制后期为含孔隙的实体。粉末压制时由于大量不同 尺寸粉末颗粒间的相互作用以及粉末与模壁间的机械作用和摩擦作用,再加上制品密度、弹性性能、塑性性能间的相互影响,粉末的力学行为是非常复杂的,还没有 一个统一的材料模型。目前由于非连续介质力学的基本理论还不完善,国内外的研究大多是将粉末体作为连续体假设而进行的。粉末压制模型可简化为弹性应力-应 变方程。
钼粉烧结过程数值模拟
烧结从本质上来说也是一种热加工工艺。烧结过程中的粉末固结和热量迁移是同时进行的,固结中的物理机制包括塑性屈服、蠕变和扩散。而粉末凝固过程中的局部 压力和温度决定着这些物理机制对粉末固结所起的作用。同时,粉末凝固中的热量迁移(主要是热量传递)又深受局部相对密度的影响,因此,对烧结的分析必须结 合热力学。
由于钼粉烧结过程的基础理论发展不足,无法建立足够的偏微分方程组,所以烧结过程的数值模拟,只能进行单元素系统、简单尺寸和形貌的钼粉情况下的简单模拟。这种模拟结果有助于分析其中的机制,但尚无法有效地指导生产工艺。
钼粉成型过程数值模拟
钼粉压制成型时,粉末的应力变形比固态金属复杂,可归纳为2个主要阶段:压制前期为松散粉末颗粒的聚合,压制后期为含孔隙的实体。粉末压制时由于大量不同 尺寸粉末颗粒间的相互作用以及粉末与模壁间的机械作用和摩擦作用,再加上制品密度、弹性性能、塑性性能间的相互影响,粉末的力学行为是非常复杂的,还没有 一个统一的材料模型。目前由于非连续介质力学的基本理论还不完善,国内外的研究大多是将粉末体作为连续体假设而进行的。粉末压制模型可简化为弹性应力-应 变方程。
钼粉烧结过程数值模拟
烧结从本质上来说也是一种热加工工艺。烧结过程中的粉末固结和热量迁移是同时进行的,固结中的物理机制包括塑性屈服、蠕变和扩散。而粉末凝固过程中的局部 压力和温度决定着这些物理机制对粉末固结所起的作用。同时,粉末凝固中的热量迁移(主要是热量传递)又深受局部相对密度的影响,因此,对烧结的分析必须结 合热力学。
由于钼粉烧结过程的基础理论发展不足,无法建立足够的偏微分方程组,所以烧结过程的数值模拟,只能进行单元素系统、简单尺寸和形貌的钼粉情况下的简单模拟。这种模拟结果有助于分析其中的机制,但尚无法有效地指导生产工艺。
2013年6月27日星期四
钼粉冶金的特性
钼粉冶金中,在压制成型时,粉末的应力变形比固态金属复杂,可归纳为2个主要阶段:压制前期为松散粉末颗粒的聚
合,压制后期为含孔隙的实体。粉末压制时由于大量不同尺寸粉末颗粒间的相互作用以及粉末与模壁间的机械作用和摩擦作用,再加上制品密度、弹性性能、塑性性
能间的相互影响,粉末的力学行为是非常复杂的,还没有一个统一的材料模型。
钼粉冶金中的烧结从本质上来说也是一种热加工工艺。烧结过程中的粉末固结和热量迁移是同时进行的,固结中的物理机制包括塑性屈服、蠕变和扩散。而粉末凝固 过程中的局部压力和温度决定着这些物理机制对粉末固结所起的作用。同时,粉末凝固中的热量迁移(主要是热量传递)又深受局部相对密度的影响,因此,对烧结 的分析必须结合热力学。
不同加工制品采用不同指标的钼粉,不同的钼粉压制成型前采用不同的前处理方法,不同的钼粉采用不同的压制、烧结工艺,并且不同物性指标钼粉可以相互搭配,获得最优原料组成和最佳的密度、均匀性等压坯质量,从而保证烧结件和最终产品的质量。
国内企业尚未形成系统的钼粉分级,无论哪种原料、哪种工艺、哪种设备获得的钼粉,均采用相似的工艺,制备同一类制品;钼粉在成型前的处理工艺更是无从提 及。较为系统地开展钼粉的粉末冶金特性研究,理清原料-工艺-钼粉-成型工艺-烧结工艺-制品之间的对应关系,对于获得产品的多元化、系列化、最优化具有 很大的生产指导意义。
钼粉冶金中的烧结从本质上来说也是一种热加工工艺。烧结过程中的粉末固结和热量迁移是同时进行的,固结中的物理机制包括塑性屈服、蠕变和扩散。而粉末凝固 过程中的局部压力和温度决定着这些物理机制对粉末固结所起的作用。同时,粉末凝固中的热量迁移(主要是热量传递)又深受局部相对密度的影响,因此,对烧结 的分析必须结合热力学。
不同加工制品采用不同指标的钼粉,不同的钼粉压制成型前采用不同的前处理方法,不同的钼粉采用不同的压制、烧结工艺,并且不同物性指标钼粉可以相互搭配,获得最优原料组成和最佳的密度、均匀性等压坯质量,从而保证烧结件和最终产品的质量。
国内企业尚未形成系统的钼粉分级,无论哪种原料、哪种工艺、哪种设备获得的钼粉,均采用相似的工艺,制备同一类制品;钼粉在成型前的处理工艺更是无从提 及。较为系统地开展钼粉的粉末冶金特性研究,理清原料-工艺-钼粉-成型工艺-烧结工艺-制品之间的对应关系,对于获得产品的多元化、系列化、最优化具有 很大的生产指导意义。
2013年6月12日星期三
不同粒度钼粉对板材组织的影响
钼粉的粒度不同,其所制成的板坯组织液不同。钼金属由于其优越的高温性能而应用广泛,同时由于熔点高使大部分制
品仍采用粉末冶金的生产方式,这种生产方式与传统的火法冶金相比成本低见效快,而特殊性能的产品如溅射靶材对坯料的纯度、致密度及晶粒度的极高要求使粉末
冶金在致密度及纯度上难以与火法冶金相比,但其具有烧结组织均匀、细小的优点,这是火法冶金难以企及的,
通过将不同粒度及形貌的钼粉进行压制烧结成为板坯,再进行轧制加工及不同温度的退火处理:在同样的烧结工艺下,大粒度钼粉及小粒度钼粉烧结组织的晶粒较 大,普通粒度钼粉烧结组织的晶粒细小;在同样的加工工艺下,普通粒度钼粉制备的板坯组织粗大,大粒度钼粉制备的板坯组织较细,
小粒度钼粉制备的板坯组织最细小;在1150~1 200℃退火时,普通粒度钼粉制备板坯的再结晶晶粒数少而晶粒粗大,大粒度钼粉板坯的再结晶晶粒数次之,小粒度钼粉板坯的再结晶晶粒最小; 1300℃时小粒度钼粉板坯的晶粒长大速度最快,而普通粒度钼粉板坯次之,大粒度钼粉板坯最慢。
通过将不同粒度及形貌的钼粉进行压制烧结成为板坯,再进行轧制加工及不同温度的退火处理:在同样的烧结工艺下,大粒度钼粉及小粒度钼粉烧结组织的晶粒较 大,普通粒度钼粉烧结组织的晶粒细小;在同样的加工工艺下,普通粒度钼粉制备的板坯组织粗大,大粒度钼粉制备的板坯组织较细,
小粒度钼粉制备的板坯组织最细小;在1150~1 200℃退火时,普通粒度钼粉制备板坯的再结晶晶粒数少而晶粒粗大,大粒度钼粉板坯的再结晶晶粒数次之,小粒度钼粉板坯的再结晶晶粒最小; 1300℃时小粒度钼粉板坯的晶粒长大速度最快,而普通粒度钼粉板坯次之,大粒度钼粉板坯最慢。
订阅:
评论 (Atom)